bat365中文官方网
师资队伍

郭迎亚

来源:bat365中文官方网站     发布日期:2022-09-09    浏览次数:

基本信息

职称:副教授

职务:硕士生导师

研究方向:人工智能与网络优化,流量工程,路由优化,软件定义网络,边缘计算,网络流量分类和异常监测,强化学习

电子邮件:guoyy@fzu.edu.cn

个人简介

郭迎亚,女,博士,副教授,硕士生导师,福建省高层次人才B 类,中国计算机学会互联网专委会执行委员,福建省计算机学会理事。研究方向为计算机网络以及人工智能算法在网络中的应用,具体包括流量工程,软件定义网络,智能路由,边缘计算,物联网,网络流量异常检测。主持参与国家重点研发计划项目、国家863项目、国家自然科学基金项目、福建省自然科学基金、福建省中青年教师教育科研项目等多项国家级和省级科研项目,在IEEE International Conference on Computer Communications (INFOCOM)、ACM International Conference on Emerging Networking Experiments and Technologies (CoNEXT)、IEEE International Conference on Network Protocols (ICNP)、IEEE/ACM Transaction on Networking (TON)、IIEEE Transactions on Mobile Computing (TMC)等国家高水平期刊和会议发表论文40余篇,授权国家发明专利3项,担任国际期刊IEEE Transactions on Parallel and Distributed Systems (TPDS),IEEE/ACM Transaction On Networking (TON),Journal of Network and Computer Application (JNCA),Computer Networks (CN),IEEE/ACM International Symposium on Quality of Service (IWQoS)等国际会议与期刊的审稿人。跟国内外各大高校,清华大学,浙江大学,中国科学院,香港理工大学,复旦大学,厦门大学,以及国内公司,阿里巴巴,腾讯,华为保持紧密的合作和联系。AINET课题组每年招收2-3名硕士研究生和若干本科生,欢迎对网络和人工智能感兴趣的本科生和硕士生邮件联系我(邮件请附上自己的简历和成绩单)。希望学生具有扎实的计算机和数学基础,较强的写作技能,勤奋努力,性格好。更多信息详见个人主页:https://yingyaguo.github.io/

教育背景

1. 本科:计算机科学与技术专业,厦门大学,2009.09-2013.07

2. 博士:计算机科学与技术专业,清华大学,2013.09-2019.07,导师:吴建平院士

3. 博士联合培养:纽约大学,2017.10-2018.09,导师:H. Jonathan Chao教授

4. 博士后:香港理工大学,2020.11-2021.09,导师:王丹教授

主持科研项目

1. 国家自然科学基金青年基金项目,混合软件定义网络下基于深度增强学习的路由优化研究,主持,2021.1-2023.12,已结题

2. 福建省自然科学基金青年项目,基于深度增强学习的混合软件定义网络智能路由方法研究,主持,2020.11-2023.11,已结题

3. 福建省教育厅中青年教师教育科研项目,面向流量工程的互联网智能路由研究,主持,2020.05-2022.05,已结题

近年发表的主要论文

  1. 1. Siping Shi, Yingya Guo*, Dan Wang, Yifei Zhu, Zhu Han. Distributionally Robust Federated Learning for Network Traffic Classification with Noisy Labels[J]. IEEE Transactions on Mobile Computing, 2023, Doi: 10.1109/TMC.2023.3319657,1-15. (CCF-A, 中科院一区SCI)

  2. 2. Han Zhang, Xia Yin, Xingang Shi*, Yingya Guo, Tian Lan, Yahui Li, and Haijun Geng. Achieving High Availability in Inter-DC WAN Traffic Engineering [J]. IEEE/ACM Transactions on Networking, 2022:1-16. (CCF-A)

  3. 3. Ying Tian, Zhiliang Wang*, Xia Yin, Xingang Shi, Yingya Guo, Haijun Geng and Jiahai Yang. Traffic Engineering in Partially Deployed Segment Routing over IPv6 Network with Deep Reinforcement Learning [J]. IEEE/ACM Transactions on Networking, 2020, 28(4): 1573-1586. (CCF-A)

  4. 4. Yingya Guo, Dan Wang*. FEAT: A Federated Approach for Privacy-Preserving Network Traffic Classification in Heterogeneous Environments[J]. IEEE Internet of Things Journal, 2022, 10 (2): 1274-1285. (物联网顶刊,中科院一区SCI)

  5. 5. Yingya Guo, Yulong Ma, Huan Luo* and Jianping Wu. Traffic Engineering in a Shared Inter-DC WAN via Deep Reinforcement Learning[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2870-2881. (中科院一区SCI)

  6. 6. Yingya Guo, Yufei Peng, Run Hao and Xiang Tang*. Capturing spatial–temporal correlations with Attention based Graph Convolutional Network for network traffic prediction[J]. Journal of Network and Computer Applications, 2023, 220: 103746. (中科院二区SCI)

  7. 7. Yingya Guo, Weipeng Wang, Han Zhang*, Wenzhong Guo, Zhiliang Wang, Ying Tian, Xia Yin and Jianping Wu. Traffic engineering in hybrid software defined network via reinforcement learning[J]. Journal of Network and Computer Applications, 2021,189: 103-116. (中科院二区SCI)

  8. 8. Yingya Guo, Zhiliang Wang, Xia Yin, Xingang Shi and Jianping Wu. Traffic Engineering in SDN/OSPF Hybrid Network[C]. IEEE International Conference on Network Protocols (ICNP) , 2014: 563-568. (CCF-B, 谷歌学术引用次数175)

  9. 9. Cheng Hu, Yingya Guo*, Yuhui Deng, Longya Lang, et al. Improve the energy efficiency of datacenters with the awareness of workload variability[J]. IEEE Transactions on Network and Service Management, 2022, 19(2): 1260-1273. (中科院二区SCI)

  10. 10. Han Zhang, Xingang Shi *, Xia Yin, Jilong Wang, Zhiliang Wang, Yingya Guo, Tian Lan. Boosting Bandwidth Availability over Inter-DC WAN[C]. ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2021: 297-312. (CCF-B)

上一篇
下一篇