报告人:叶永南, 台湾中央研究院数学所
报告时间:2019年3月19日(周二) 15:30-17:30
报告地点:数计学院4号楼229会议室
报告题目:Asymptotic normality criteria of coeffcients of a polynomial and their applications in combinatorics
报告摘要:The asymptotic distribution theory for coefficients of a polynomial is an active topic in asymptotic analysis. In 1967, Harper proposed a criterion to measure the asymptotic normality of a series of numbers, when he researched the asymptotic behavior of Stirling numbers of the second kind. In this paper, we aim to develop some further asymptotic normality criteria of coefficients of a polynomial with all real roots or purely imaginary roots (including 0). These new asymptotic normality criteria turn out to be very efficient and have abundant applications in combinatorics, mainly including the coefficients of a series of characteristic polynomials of adjacency matrix, Laplacian matrix, signless Laplacian matrix, skew-adjacency matrix, chromatic polynomial, and some graph numbers, such as matching numbers, independence numbers, clique numbers. Among which, we generalize and verify some conjectures about asymptotic normality in combinatorics, e.g., the matching numbers proposed by Godsil and Kahn, the (signless) Laplacian coefficients claimed by Wang et al.
报告人简介:叶永南,台湾中研院数学研究所研究员,1985年在美国纽约州立大学水牛城分部获得博士学位,1987年7月返台担任台湾中央研究院数学所副研究员,1991年1月晋升为研究员迄今。曾任加拿大魁北克大学蒙特娄分部资讯与数学系研究学者,麻省理工学院数学系、柏克莱加州大学统计系和澳洲Monash大学经济系访问学者。学术研究除了数学之外,还涉及物理化学、统计、经济等多个领域。曾任台湾数学推动中心主任,台湾中研院数学所副所长,多次获得台湾中研院杰出研究奖,台湾国科会杰出研究奖,台湾国科会杰出研究计划奖。已发表的论文有百余篇,组合论国际顶级杂志Journal of Combinatorial Theory Series A曾出版专门文章介绍Yeh-species, 这个由叶永南研究员名字命名的领域,现在这一方向的研究仍然在不断深入。目前,叶永南研究员的研究主要在图的Tutte多项式及其相关组合结构、计数组合学中uniform partitions等方面。
欢迎老师和研究生参加!