报告题目:Energy conservation in 2-D density-dependent incompressible Euler equations
报告人:陈卿(厦门理工学院)
报告地点:数学与计算机科学学院4号楼302室
报告时间:2019年12月12日上午9:00
摘要:This talk is concerned with the problem of energy conservation for the two dimensional inhomogeneous Euler equations. In particular, two types of sufficient conditions are obtained. The first one assumes Lp-regularity on the spatial gradient of the density and the vorticity. The second one removes the regularity condition on the spatial gradient of the density while requires certain time regularity of the vorticity. Furthermore, we phrase the energy spectrum in terms of the Littlewood-Paley decomposition and show that the energy flux vanishes as the dyadic exponent goes to infinity.
报告人介绍:陈卿,1984年生,博士,厦门理工学院应用数学学院副教授,厦门理工学院“鹭江学者”,入选2016年福建省高校杰出青年科研人才培育计划,主持国家自然科学项目天元基金、青年基金项目各1项,主持福建省自然科学基金面上项目1项,在Proceedings of the Royal Society of Edingburgh,J. Differential Equations等SCI杂志上发表论文十多篇。